

*$\pi$ -Electronic Structure of Diphenoquinone*

By Akira KUBOYAMA

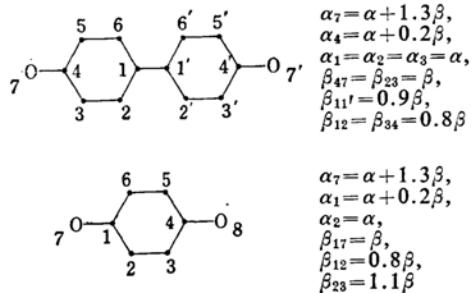
(Received January 11, 1960)

In previous papers the  $\pi$ -electronic structures of *p*-quinones<sup>1)</sup> (*p*-benzoquinone,  $\alpha$ -naphthoquinone and anthraquinone) and *o*-quinones<sup>2)</sup> (*o*-benzoquinone,  $\beta$ -naphthoquinone and phenanthrenequinone) were studied by the aid of the simple LCAO MO method, with good agreement between the calculated and experimental results concerning the near UV absorption bands of these quinones. In the

present paper, it is undertaken to carry out a similar study on the  $\pi$ -electronic structure of diphenoquinone\*, the spectroscopic feature of which has never been theoretically studied.

**Method of Calculation**

As the molecular dimension of diphenoquinone(DQ) has never been known, it is


1) A. Kuboyama, *This Bulletin*, **31**, 752 (1958).

2) A. Kuboyama, *ibid.*, **32**, 1226 (1959).

\* C. A. Coulson has studied the bond orders of diphenoquinone [*Trans. Faraday Soc.*, **42**, 106 (1946)].

impossible to calculate the overlap integrals necessary for the evaluation of exchange integrals ( $\beta_{ij}$ ). Therefore, the values of exchange integrals as well as of Coulomb integrals ( $\alpha_i$ ) were determined by referring to the corresponding values for *p*-benzoquinone (BQ)<sup>12</sup>. The values of these integrals eventually used for the present calculation are shown in Chart I. As it was expected that owing to the steric hindrance between hydrogen atoms at the 2, 6-positions and at the 2', 6'-positions, two six-membered rings of DQ are somewhat twisted together around the C<sub>1</sub>-C<sub>1'</sub> bond, the adopted value for  $\beta_{11'}$  was a little smaller than that for  $\beta_{23}$ .

Chart I. Values of exchange and Coulomb integrals



### Results

The molecular diagrams are given in Charts II and III, together with those of BQ.

Chart II. Charge densities and bond orders

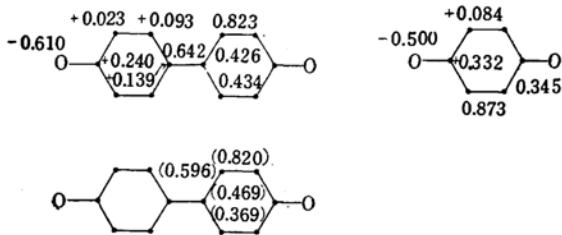
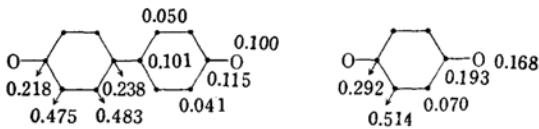




Chart III. Free valences and unpaired electron densities



In these diagrams, the unpaired electron densities are the squares of the coefficients of atomic orbitals in the lowest unfilled orbital. The bond order values of DQ in parentheses are those obtained by Coulson\*\*. The orbital

\*\* In the calculation\*, the adopted integral values are as follows.  $\alpha_7$  and  $\beta_{17}$  are respectively  $\alpha + 2\beta$ ,  $2\beta$  and the other Coulomb and exchange integrals are all  $\alpha$  and  $\beta$ , respectively.

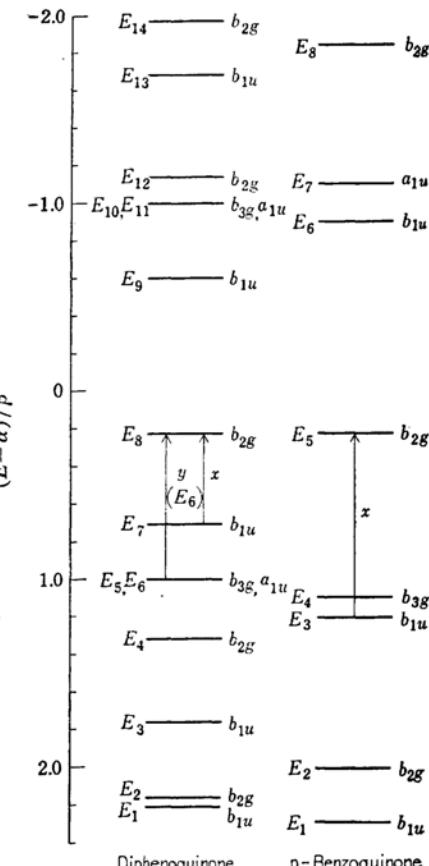



Fig. 1.

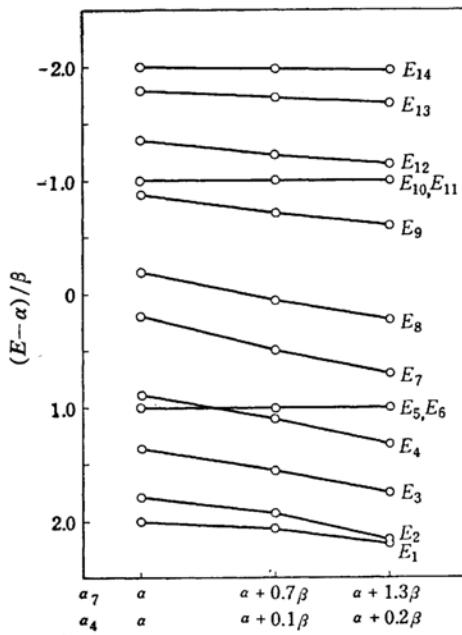



Fig. 2.

energies of DQ are given in Fig. 1, together with those of BQ. The dependence of the orbital energies upon the Coulomb integral of the oxygen atoms of DQ is shown in Fig. 2. The molecular orbitals are classified according to their symmetry properties in the symmetry group ( $D_{2h}$ ), the O-O direction being taken as the  $x$ -axis and the molecular plane as the  $xy$  plane. The  $E_5$  and  $E_6$  orbitals as well as the  $E_{10}$  and  $E_{11}$  orbitals are accidentally degenerate. The letter "x" or "y" attached to the arrow showing a transition denotes the direction of polarization in an allowed transition. The filled and the lowest unfilled molecular orbitals of DQ are given below with their energy values.  $\chi_i$  denotes the  $2p\pi$  atomic orbital of the  $i$ th atom.

$$\begin{aligned}
 E_1 & 0.2100(\chi_1 + \chi_1') + 0.1721(\chi_2 + \chi_6 + \chi_{2'} + \chi_{6'}) \\
 & + 0.2127(\chi_3 + \chi_5 + \chi_{3'} + \chi_{5'}) + 0.3726(\chi_4 + \chi_{4'}) \\
 & + 0.4091(\chi_7 + \chi_{7'}) \\
 E_2 & 0.0611(\chi_1 - \chi_1') + 0.1169(\chi_2 + \chi_6 - \chi_{2'} - \chi_{6'}) \\
 & + 0.2041(\chi_3 + \chi_5 - \chi_{3'} - \chi_{5'}) + 0.4058(\chi_4 - \chi_{4'}) \\
 & + 0.4701(\chi_7 - \chi_{7'}) \\
 E_3 & 0.4604(\chi_1 + \chi_1') + 0.2465(\chi_2 + \chi_6 + \chi_{2'} + \chi_{6'}) \\
 & + 0.0650(\chi_3 + \chi_5 + \chi_{3'} + \chi_{5'}) - 0.1654(\chi_4 + \chi_{4'}) \\
 & - 0.3616(\chi_7 + \chi_{7'}) \\
 E_4 & 0.2255(\chi_1 - \chi_1') + 0.3128(\chi_2 + \chi_6 - \chi_{2'} - \chi_{6'}) \\
 & + 0.2325(\chi_3 + \chi_5 - \chi_{3'} - \chi_{5'}) - 0.0075(\chi_4 - \chi_{4'}) \\
 & - 0.3804(\chi_7 - \chi_{7'}) \\
 E_5 & 0.3535(\chi_2 + \chi_3 - \chi_5 - \chi_6 + \chi_{2'} + \chi_{3'} - \chi_{5'} - \chi_{6'}) \\
 E_6 & 0.3535(\chi_2 + \chi_3 - \chi_5 - \chi_6 - \chi_{2'} - \chi_{3'} + \chi_{5'} + \chi_{6'}) \\
 E_7 & 0.3459(\chi_1 + \chi_1') - 0.0406(\chi_2 + \chi_6 + \chi_{2'} + \chi_{6'}) \\
 & - 0.3056(\chi_3 + \chi_5 + \chi_{3'} + \chi_{5'}) - 0.2211(\chi_4 + \chi_{4'}) \\
 & + 0.3759(\chi_7 + \chi_{7'}) \\
 E_8 & 0.3185(\chi_1 - \chi_1') + 0.2246(\chi_2 + \chi_6 - \chi_{2'} - \chi_{6'}) \\
 & - 0.2015(\chi_3 + \chi_5 - \chi_{3'} - \chi_{5'}) - 0.3388(\chi_4 - \chi_{4'}) \\
 & + 0.3161(\chi_7 - \chi_{7'})
 \end{aligned}$$

|               |                         |                  |                         |
|---------------|-------------------------|------------------|-------------------------|
| $E_1(b_{1u})$ | $\alpha + 2.21098\beta$ | $E_8(b_{2g})$    | $\alpha + 0.22822\beta$ |
| $E_2(b_{2g})$ | $\alpha + 2.16326\beta$ | $E_9(b_{1u})$    | $\alpha - 0.60266\beta$ |
| $E_3(b_{1u})$ | $\alpha + 1.75738\beta$ | $E_{10}(b_{3g})$ | $\alpha - \beta$        |
| $E_4(b_{2g})$ | $\alpha + 1.31977\beta$ | $E_{11}(a_{1u})$ | $\alpha - \beta$        |
| $E_5(b_{3g})$ | $\alpha + \beta$        | $E_{12}(b_{2g})$ | $\alpha - 1.13941\beta$ |
| $E_6(a_{1u})$ | $\alpha + \beta$        | $E_{13}(b_{1u})$ | $\alpha - 1.67736\beta$ |
| $E_7(b_{1u})$ | $\alpha + 0.71165\beta$ | $E_{14}(b_{2g})$ | $\alpha - 1.97184\beta$ |

### Discussion

**Molecular Diagram.**—As for charge distribution, the negative charge of the oxygen atom of DQ is a little larger than that of BQ and of anthraquinone (0.567  $e$ ). As for bond orders, the general feature of DQ is in qualitative agreement with the one obtained by Coulson. The bond order of the  $C_2-C_3$  bond of DQ is nearly as large as that of the  $C_2-C_3$  bond of BQ, and the bond orders of the  $C_1-C_2$  and  $C_3-C_4$  bonds of DQ are nearly equal. The

bond order obtained by Coulson is considerably smaller in the  $C_3-C_4$  bond than in the  $C_1-C_2$  bond. The free valences of DQ are in general nearly equal to those of BQ. In DQ the free valency value of the  $C_1$  atom is almost the same as that of the  $C_4$  atom. As for the unpaired electron densities, in  $o$ - and  $p$ -quinones previously studied, the part larger than sixty percent of the total unpaired electron density exists at the two carbonyl groups, while in DQ the part smaller than fifty percent of the total unpaired electron density exists at the two carbonyl groups. The relatively large unpaired electron density value for the  $C_1$  atom of DQ is noticeable. Unfortunately, in DQ the hfs of the electron paramagnetic resonance absorption of the semi-quinone ion has never been measured due to the instability of the ion, but for 3,5,3',5'-tetramethyl-DQ Matsunaga\*\*\* obtained the splitting constant (0.78 gauss) of the hfs due to ring protons. This value is considerably smaller than the one (1.39 gauss) calculated from the combination of the obtained unpaired electron density with McConnell's formula<sup>32</sup>.

**Energy Levels.**—Concerning the energy levels given above, two points should be mentioned. First, the lowest unfilled orbital ( $E_8$ ) is far lower than the other unfilled orbitals, as was previously obtained with  $o$ - and  $p$ -quinones, and is near the orbital ( $E_5$ ) of BQ. Second, the highest filled orbital ( $E_7$ ) is considerably higher than the ones of the  $p$ -quinones. The electronic spectrum of DQ in dioxane obtained by Hartmann and Lorenz<sup>12</sup> is given in Fig. 3. As is seen in Fig. 3, DQ has three absorption bands at about 500, 390 and 260 m $\mu$ . Now these absorption bands are reasonably attributed to the transitions from the rather higher filled

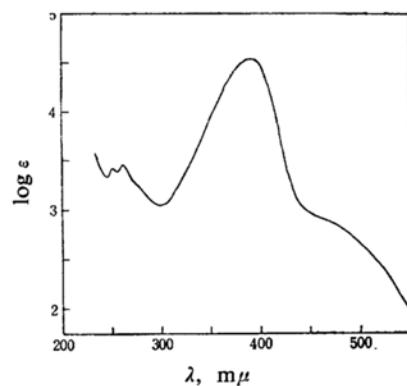



Fig. 3<sup>12</sup>. Electronic spectrum of diphenoquinone, solvent dioxane.

\*\*\* Unpublished data.

<sup>32</sup> H. M. McConnell, *J. Chem. Phys.*, **24**, 632 (1956).

<sup>12</sup> H. Hartmann and E. Lorenz, *Z. Naturforsch.*, **7a**, 360 (1952).

orbitals to the lowest unfilled orbital ( $E_8$ ) of DQ. The transitions  $E_4 \rightarrow E_8$ ,  $E_5 \rightarrow E_8$  are forbidden. The dipole strengths, calculated with Mulliken's approximation<sup>5)</sup>, are 0.0014 ( $\text{\AA}^2$ ) and 5.97 ( $\text{\AA}^2$ ) for the transitions  $E_6 \rightarrow E_8$  and  $E_7 \rightarrow E_8$ , respectively. Thus, the strong band near 390 m $\mu$  is unambiguously assigned to the transition  $E_7 \rightarrow E_8 (A_{1g} \rightarrow B_{3u})$ . This transition corresponds to the transition  $E_3 \rightarrow E_5 (A_{1g} \rightarrow B_{3u})$  of BQ. For the  $A_{1g} \rightarrow B_{3u}$  transition bands, the calculated transition energies (0.979 $\beta$  for BQ, 0.483 $\beta$  for DQ) are reasonable in comparison with the observed ones (ca. 5.0 e. V. for BQ, ca. 3.2 e. V. for DQ). The weak band near 500 m $\mu$  may be assigned to the transition  $E_6 \rightarrow E_8 (A_{1g} \rightarrow B_{2u})$  or  $E_5 \rightarrow E_8 (A_{1g} \rightarrow B_{1g})$ , but the transition energy (0.772 $\beta$ ) seems too great for this assignment. This band may tentatively be due to the  $n\text{-}\pi^*$  transition. The intensity of this band seems considerably great compared with the  $n\text{-}\pi^*$  transition band of other quinones but is nearly equal to that of the  $n\text{-}\pi^*$  transition band of *trans*-azobenzene<sup>6)</sup>. The band near 260 m $\mu$  is tentatively assigned to the transition  $E_4 \rightarrow E_8 (A_{1g} \rightarrow A_{1g})$ .

### Summary

The electronic structure of diphenoxquinone was studied with the simple MO method using

the similar integral values as adopted in our previous work on *p*-quinones. The obtained result was discussed in comparison with the previously obtained one for *p*-benzoquinone. As for energy levels, the lowest unfilled orbital ( $b_{2g}$ ) of diphenoxquinone is far lower than the other unfilled orbitals as was obtained with the *p*-quinones. The highest filled orbital ( $b_{1u}$ ) of diphenoxquinone is considerably higher than the ones of the *p*-quinones. From the calculated result the intense absorption band near 390 m $\mu$  was unambiguously assigned to the  $A_{1g} \rightarrow B_{3u}$  transition.

The author wishes to express his sincere thanks to Professor S. Nagakura of the University of Tokyo for his kind guidance and to Dr. Y. Mashiko of this Institute for his kind offices. The author's thanks are also due to Dr. Y. Matsunaga of the University of Tokyo for his kindness in giving valuable information on the EPR data of semiquinone ions prior to publication.

Government Chemical Industrial  
Research Institute, Tokyo  
Shibuya-ku, Tokyo

---

5) R. S. Mulliken, *J. Chem. Phys.*, **7**, 20 (1939).  
6) P. P. Birnbaum, J. H. Linford and D. W. G. Style, *Trans. Faraday Soc.*, **49**, 735 (1953).